The Formation of Stellar Halos Amina Helmi (2008)

Dane Späth

January 12th, 2018

2 Introduction

3 Substructure

4 Formation Scenarios

Source: Composite Image: European Southern Observatories, Subaru Telescope and Amateur Data. Image Processing and Assembly Robert Gendler, Roberto Colombari

- Most metal-poor (and thus probably oldest) stars are found in the halo
- Picture of a galaxy in its early stages of evolution
- Understanding the halo's formation could lead to a better understanding of galaxy formation

Recap: Structure of the Milky Way

 $\bullet \sim 1\%$ of Milky Way's mass in stellar halo ($\sim 10^9 M_{\odot})$

Copyright @ 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley.

The Milky Way's Stellar Halo

- Very metal poor and old (>12Gyr) field stars (Population II)
- Low rotational velocity, high velocity dispersions
- ullet \sim 150 globular clusters
- Approximation for density profile: $ho \propto r^{-3.5}$
- Effective radius within solar radius but some stars reaching out at least 100 kpc

Introduction

Substructure

Formation Scenarios

Halos in other galaxies

Summary

The Inner and Outer Stellar Halo

Inner Halo

- \bullet flattened (q \sim 0.6)
- less metal-poor ([Fe/H]≈-1.6)
- net prograde rotation

Outer Halo

- roughly spherical
- more metal-poor ([Fe/H]≈-2.2)
- net retrograde rotation
- dominates at $r\gtrsim 20~{
 m kpc}$

- Luminous matter is surrounded by a dark matter halo
- \sim 90 95 % of the Milky Way's mass is contributed by the dark halo
- Probably spheroidal in shape

Motivation	Introduction	Substructure	Formation Scenarios	Halos in other galaxies	Summary
Stellar streams					

- Star distribution in the halo is not smooth but shows substructure (stellar streams)
- Streams can be linked to tidally stripped dwarf galaxies (e.g Sagittarius (Sgr) Dwarf Elliptical Galaxy)

- Map of the Sky from SDSS showing stars counted in the Sgr stream
- Color indicates distance (red: further away, blue: closer)

Motivation Introduction Substructure Formation Scenarios Halos in other galaxies Summary

Identification of stellar streams - Spatial domain

- Simulation of a satellite galaxy's disruption in the inner halo
- t \sim t_{orb} (short after infall or in outer halo): Streams are coherent in space
- Streams can be identified via mapping of the sky

Source: Helmi et al. (1999)

- Velocities of simulated stars in a spherical volume of \sim 2 kpc around the sun at t \sim 8 Gyr are strongly clustered
- Observationally more demanding

Introduction

Substructure

Formation Scenarios

Halos in other galaxies

Summary

Two Theories of Galaxy Formation

Monolithic collapse

Galaxies form and evolve isolated through collapse of large gas clouds (Eggen, Lynden-Bell & Sandage (1962))

 Halo stars form 'in situ' through the dissipative collapse of a gaseous cloud

Hierarchical Formation

Galaxies form and evolve through successive mergers of smaller bodies (Searle & Zinn (1978))

 Halo stars form in small protogalaxies that subsequently merge without dissipation

Introduction S

Substructure

Formation Scenarios

Halos in other galaxies

Summary

The Formation of the Outer Halo

- Observations: Outer halo is very lumpy
 - \Longrightarrow Can better be explained by accretion of dwarf galaxies
- Simulations by Bullock & Johnston (2005) (only accretion) describe the outer halo well

Source: Bullock & Johnston (2005)

Formation Scenarios Introduction Substructure

Halos in other galaxies

Summary

The Formation of the Outer Halo

Initial condition:

- Simulations by De Lucia & Helmi (2008) (accretion only) also describe the outer halo well
- High resolution cosmological simulation

Source: De Lucia & Helmi (2008)

Motivation Introduction Substructure Formation Scenarios Halos in other galaxies Summary

The Formation of the Inner Halo

- Can also model inner halo to some degree
- Inner halo is less metal poor (as observed)
- Stellar halo more centrally concentrated than dark matter halo
- Transition at $r \approx 20$ kpc

Source: De Lucia & Helmi (2008)

The Formation of the Inner Halo

Some observations cannot be explained by accretion:

- Metallicity gradients
- High [Fe/H] halo population in solar neighborhood Font et al. (2011) present cosmological hydrodynamical simulations including:
 - Star Formation
 - Metal dependent radiative cooling
 - Supernova Feedback

The Formation of the Inner Halo

- 'In situ' dominates up to r \sim 20-30 kpc, accretion beyond
- 'In situ' contributes
 68% of current
 halo+bulge mass
- For outer halo (r > 20 kpc): 'in situ': 20 %, accretion: 80 %
- Both scenarios are important

The Formation of the Inner Halo

- Simulations predict observed metallicity behaviour
- 'In situ' star formation can explain the observed high metallicities
- Metallicity gradients can be explained by the transition from 'in situ' to accretion scenarios

Introduction

Subst

Substructure

Formation Scenarios

Halos in other galaxies

Summary

The Halo of M31 (Andromeda)

- PAndAS map of stars with $i_0 \le 23, 5$ and $-1 \le [Fe/H] \le 0$
- Blue circle: r=50 kpc
- Substructure is labeled and can be explained by tidal streams

3 key points to remember

- The Stellar Halo has substructure (stellar streams) originating from the accretion of dwarf galaxies
- The Outer Halo formed primarily via accretion of dwarf galaxies
- The Inner Halo was mainly built up by 'in situ' star formation

Thank you for your attention!